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2b. A FEM for elasticity based on energy

• As for any PDE, the equations of elasticity can be solved using  
Weighted Residual Methods, as introduced in section 1b.

• However, the equations of elasticity can also be solved using a 
physical model, and this approach is always used to formulate the 
elastic FEM.

• In this physical method, an expression for the total energy of the 
system, Π, is determined.

• The displacement field is selected such that it minimises the total 
energy, e.g., if the DOF is 𝑐 then the solution satisfies

𝜕Π
𝜕𝑐

= 0
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2b. A FEM for elasticity based on energy

The energy of an elastically deformed body consists of two parts such 
that

Π = 𝑈 + Ω
Where:

𝑈 is known as the elastic stored energy or the elastic 
strain energy

Ω is the potential energy of the applied loads
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2b. Elastic strain energy, 𝑈

𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡, 𝑢

𝐹𝑜
𝑟𝑐
𝑒,
𝑓 Work done, 𝑈 = 𝐹𝑜𝑟𝑐𝑒 × 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

= area under the curve 
= !

"
𝑓𝑢

The factor of a half appears as the force 
increases with the displacement.
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2b. Elastic strain energy density, 𝑤
St

re
ss

, 𝜎
#
=
𝐹/
𝐴

Work done per unit volume, 

𝑤 =
𝐹𝑜𝑟𝑐𝑒
𝐴𝑟𝑒𝑎

×
𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡

𝐿𝑒𝑛𝑔𝑡ℎ
= stress × strain
= area under the curve 
= !

"
𝜎#𝜖#

Total strain energy:

𝑈 = B
$
𝑤𝑑𝑉 =

1
2
B
$
𝜎#𝜖#𝑑𝑉

Volume of the body

Typically the stress and 
strain (and hence 𝑤) vary 
throughout the body

Strain, 𝜖# =
𝑢
𝐿

Torsion spring



FEM and Elasticity Theory 6

2b. Potential energy of the applied loads

𝑃

Two types of contributions. 

I. The potential energy of the load 𝑷 (traction applied to the 
external end surface) is given by

𝛀 = −𝑷𝒖𝑳

Where 𝑢! is the distance moved by the applied load 𝑃. 
(The minus sign shows that work is done by the load)

ii. The potential energy of the body force (force per unit volume)

𝛀 = −B
𝑽
𝒇𝒙𝒖 𝒅𝑽

(You can show that this is the change in total potential energy 𝑚𝑔ℎ of 
the body before and after loading).

𝑢(

𝑓#

𝑥
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2b. (i) Simple 1D extension using FEM

𝑢(

Loaded
Load, 𝑃

Young’s modulus, 𝐸
Cross-sectional area, 𝐴

Length, 𝐿

Π = 𝑈 + Ω
Where

𝑈 = B
$
𝑤𝑑𝑉 =

1
2
B
$
𝜎#𝜖#𝑑𝑉

Ω = −𝑃𝑢(

Ω = −B
$
𝑓#𝑢 𝑑𝑉

Or
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2b. (i) Simple 1D extension using FEM

Propose a linear shape function for the solution

𝑢 𝑥 = 𝑢(
𝑥
𝐿

One DOF is end displacement 𝑢(

𝑢(

Loaded
Load, 𝑃

Young’s modulus, 𝐸
Cross-sectional area, 𝐴

Length, 𝐿

𝑢 0 = 0

𝑢 𝐿 = 𝑢( Our DOF to be determined
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2b. (i) Simple 1D extension using FEM

Elastic strain energy

𝜖# =
𝑑𝑢
𝑑𝑥

=
𝑢(
𝐿

𝑈 =
1
2
B
$
𝜎#𝜖# 𝑑𝑉 =

1
2
𝐴B

)

(
𝐸𝜖#" 𝑑𝑥 =

1
2
𝐸𝐴B

)

(
𝜖#" 𝑑𝑥

The elastic strain energy is 
always a second order 
polynomial in terms of DOF

𝑈 =
1
2
B
$
𝜎#𝜖#𝑑𝑉

𝑉 = 𝐴𝐿

𝑈 =
1
2
𝐸𝐴𝑢("

𝐿"
𝐿 =

1
2
𝐸𝐴
𝐿
𝑢("

𝑈 =
1
2
𝐸𝐴B

)

( 𝑢(
𝐿

"
𝑑𝑥
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2b. (i) Simple 1D extension using FEM

Potential energy of the applied load

Ω = −𝑃𝑢(

The potential energy is 
always a first order 
polynomial in terms of DOF

𝑢(

Loaded
Load, 𝑃

Young’s modulus, 𝐸
Cross-sectional area, 𝐴

Length, 𝐿
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2b. (i) Simple 1D extension using FEM

Total energy

Π =
1
2
𝐸𝐴
𝐿
𝑢(" − 𝑃𝑢(

Minimize total energy with respect to DOF

𝜕Π
𝜕𝑢(

= 0

Same result as before…. 
Because the proposed shape 
function has the same form as 

the exact solution.

𝐸𝐴
𝐿 u* − P = 0

u* =
PL
EA

𝑢(𝑥) =
P
EA

x

⟹

⟹ ⟹

𝐸𝑞 4

Differentiate 𝐸𝑞 4
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2b. (ii) Self-weight using FEM

Try solving this problem using:

I. Linear (1 DOF: 𝑢!) shape function
𝑢 𝑥 = 𝑢!

𝑥
𝐿

ii. Quadratic (2 DOF: 𝑎 and 𝑏) shape function

𝑢 𝑥 = 𝑎
𝑥
𝐿
+ 𝑏

𝑥
𝐿

"

𝑓#

𝑥

𝑢(
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2b. (ii) Self-weight (Linear Shape Function)

𝑢 𝑥 = 𝑢!
𝑥
𝐿

𝑈 =
1
2
𝐸𝐴B

)

( 𝑢!
𝐿

"
𝑑𝑥 =

1
2
𝐸𝐴
𝐿
𝑢!"

Ω = −B
$
𝑓#𝑢 𝑥 𝑑𝑉 = −B

)

(
𝜌𝑔. 𝑢!

𝑥
𝐿 𝐴𝑑𝑥 = −

𝜌𝑔. 𝑢!. 𝐴
𝐿

B
)

(
𝑥 𝑑𝑥

𝑓#

𝑥

𝑢(

𝑓# = 𝜌𝑔

𝑈 =
1
2
𝐸𝐴B

)

(
𝜖#" 𝑑𝑥

𝑢 𝑥 = 𝑢!
𝑥
𝐿

Propose

= −
1
2
𝐴𝜌𝑔𝐿. 𝑢!
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2b. (ii) Self-weight (Linear Shape Function)

Π =
1
2
𝐸𝐴
𝐿
𝑢!" −

1
2
𝐴𝜌𝑔𝐿. 𝑢!

𝜕Π
𝜕𝑢!

= 0 =
𝐸𝐴
𝐿
𝑢! −

1
2
𝐴𝜌𝑔𝐿 = 0 𝑢! =

𝜌𝑔𝐿"

2𝐸

𝑢(𝑥) =
𝜌𝑔𝐿
2𝐸

𝑥𝑓#

𝑥 ⟹

𝜌𝑔𝐿"

2𝐸

𝑥

Linear approx.

Exact quadratic solution

𝐿

𝑢(
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Next section…
(3) Bar Elements


