Schoolof
Engineering

FEM and Elasticity Theory Gebril $\mathfrak{E l - F a l l a h ~}$

EG3111 - Finite $\mathcal{E l}$ ement Analysis and Design

2b. A FEM for elasticity based on energy

- As for any PDE, the equations of elasticity can be solved using Weighted Residual Methods, as introduced in section 1b.
- However, the equations of elasticity can also be solved using a physical model, and this approach is always used to formulate the elastic FEM.
- In this physical method, an expression for the total energy of the system, Π, is determined.
- The displacement field is selected such that it minimises the total energy, e.g., if the DOF is c then the solution satisfies

$$
\frac{\partial \Pi}{\partial c}=0
$$

2b. A FEM for elasticity based on energy

The energy of an elastically deformed body consists of two parts such that

$$
\Pi=U+\Omega
$$

Where:
U is known as the elastic stored energy or the elastic strain energy
Ω is the potential energy of the applied loads

2b. Elastic strain energy, U

The factor of a half appears as the force increases with the displacement.

2b. Elastic strain energy density, w

$$
\begin{aligned}
& w=\frac{\text { Force }}{\text { Area }} \times \frac{\text { Displacement }}{\text { Length }} \\
& =\text { stress } \times \text { strain } \\
& =\text { area under the curve } \\
& =\frac{1}{2} \sigma_{x} \epsilon_{x}
\end{aligned}
$$

Total strain energy:

$$
U=\int_{V} w d V=\frac{1}{2} \int_{V} \sigma_{x} \epsilon_{x} d V
$$

Volume of the body

Typically the stress and strain (and hence w) vary throughout the body

2b. Potential energy of the applied loads

Two types of contributions.

I. The potential energy of the load \boldsymbol{P} (traction applied to the external end surface) is given by

$$
\boldsymbol{\Omega}=-\boldsymbol{P} \boldsymbol{u}_{\boldsymbol{L}}
$$

Where u_{L} is the distance moved by the applied load P.
(The minus sign shows that work is done by the load)
ii. The potential energy of the body force (force per unit volume)

$$
\boldsymbol{\Omega}=-\int_{\boldsymbol{V}} f_{x} u d \boldsymbol{v}
$$

(You can show that this is the change in total potential energy mgh of the body before and after loading).

2b. (i) Simple 1D extension using FEM

Cross-sectional area, A

$$
\Pi=U+\Omega
$$

Where

$$
\begin{gathered}
U=\int_{V} w d V=\frac{1}{2} \int_{V} \sigma_{x} \epsilon_{x} d V \\
\Omega=-P u_{L} \\
\Omega=-\int_{V}^{\text {or }} f_{x} u d V
\end{gathered}
$$

2b. (i) Simple 1D extension using FEM

Young's modulus, E
Cross-sectional area, A
Propose a linear shape function for the solution

$$
\begin{gathered}
u(x)=u_{L}\left(\frac{x}{L}\right) \\
u(0)=0
\end{gathered}
$$

$$
u(L)=u_{L} \quad \text { Our DOF to be determined }
$$

One DOF is end displacement u_{L}

2b. (i) Simple 1D extension using FEM

Elastic strain energy

$$
U=\frac{1}{2} \int_{V} \sigma_{x} \epsilon_{x} d V
$$

$$
\begin{gathered}
\epsilon_{x}=\frac{d u}{d x}=\frac{u_{L}}{L} \quad V=A L \\
U=\frac{1}{2} \int_{V} \sigma_{x} \epsilon_{x} d V=\frac{1}{2} A \int_{0}^{L} E \epsilon_{x}^{2} d x=\frac{1}{2} E A \int_{0}^{L} \epsilon_{x}^{2} d x \\
U=\frac{1}{2} E A \int_{0}^{L}\left(\frac{u_{L}}{L}\right)^{2} d x \quad \begin{array}{l}
\text { The elastic strain energy is } \\
\text { always a second order } \\
\text { polynomial in terms of DOF }
\end{array} \\
U=\frac{1}{2} \frac{E A u_{L}^{2}}{L^{2}} L=\frac{1}{2} \frac{E A}{L} u_{L}^{2} \quad
\end{gathered}
$$

2b. (i) Simple 1D extension using FEM

Cross-sectional area, A

Potential energy of the applied load

2b. (i) Simple 1D extension using FEM

Total energy

$$
\Pi=\frac{1}{2} \frac{E A}{L} u_{L}^{2}-P u_{L} \quad E q 4
$$

Minimize total energy with respect to DOF
Differentiate Eq 4

$$
\frac{\partial \Pi}{\partial u_{L}}=0 \quad \Longrightarrow \quad \frac{E A}{L} \mathrm{u}_{\mathrm{L}}-\mathrm{P}=0
$$

Same result as before Because the proposed shape function has the same form as the exact solution.

$$
\Longrightarrow \mathrm{u}_{\mathrm{L}}=\frac{\mathrm{PL}}{\mathrm{EA}} \quad \Longrightarrow \quad u(x)=\frac{\mathrm{P}}{\mathrm{EA}} \mathrm{x}
$$

2b. (ii) Self-weight using FEM

Try solving this problem using:
I. Linear (1 DOF: u_{1}) shape function

$$
u(x)=u_{1}\left(\frac{x}{L}\right)
$$

ii. Quadratic (2 DOF: a and b) shape function

$$
u(x)=a\left(\frac{x}{L}\right)+b\left(\frac{x}{L}\right)^{2}
$$

2b. (ii) Self-weight (Linear Shape Function)

$$
\prod_{x}
$$

$$
\begin{gathered}
f_{x}=\rho g \\
U=\frac{1}{2} E A \int_{0}^{L} \epsilon_{x}^{2} d x
\end{gathered}
$$

Propose

$$
\begin{gathered}
u(x)=u_{1}\left(\frac{x}{L}\right) \\
U=\frac{1}{2} E A \int_{0}^{L}\left(\frac{u_{1}}{L}\right)^{2} d x=\frac{1}{2} \frac{E A}{L} u_{1}^{2} \\
\Omega=-\int_{V} f_{x} u(x) d V=-\int_{0}^{L} \rho g \cdot u_{1}\left(\frac{x}{L}\right) A d x=-\frac{\rho g \cdot u_{1} \cdot A}{L} \int_{0}^{L} x d x \\
=-\frac{1}{2} A \rho g L \cdot u_{1}
\end{gathered}
$$

2b. (ii) Self-weight (Linear Shape Function)

Next section... (3) Bar Elements

